Exponentially Small Lower Bounds for the Splitting of Separatrices to Whiskered Tori with Frequencies of Constant Type
نویسندگان
چکیده
We study the splitting of invariant manifolds of whiskered tori with two frequencies in nearlyintegrable Hamiltonian systems, such that the hyperbolic part is given by a pendulum. We consider a two-dimensional torus with a fast frequency vector ω/ √ ε, with ω = (1,Ω) where Ω is an irrational number of constant type, i.e. a number whose continued fraction has bounded entries. Applying the Poincaré–Melnikov method, we find exponentially small lower bounds for the maximal splitting distance between the stable and unstable invariant manifolds associated to the invariant torus, and we show that these bounds depend strongly on the arithmetic properties of the frequencies.
منابع مشابه
Exponentially Small Splitting of Separatrices and Transversality Associated to Whiskered Tori with Quadratic Frequency Ratio
The splitting of invariant manifolds of whiskered (hyperbolic) tori with two frequencies in a nearly-integrable Hamiltonian system, whose hyperbolic part is given by a pendulum, is studied. We consider a torus with a fast frequency vector ω/ √ ε, with ω = (1,Ω) where the frequency ratio Ω is a quadratic irrational number. Applying the Poincaré-Melnikov method, we carry out a careful study of th...
متن کاملContinuation of the exponentially small transversality for the splitting of separatrices to a whiskered torus with silver ratio
We study the exponentially small splitting of invariant manifolds of whiskered (hyperbolic) tori with two fast frequencies in nearly-integrable Hamiltonian systems whose hyperbolic part is given by a pendulum. We consider a torus whose frequency ratio is the silver number Ω = √ 2 − 1. We show that the Poincaré–Melnikov method can be applied to establish the existence of 4 transverse homoclinic ...
متن کاملExponentially Small Asymptotic Estimates for the Splitting of Separatrices to Whiskered Tori with Quadratic and Cubic Frequencies
We study the splitting of invariant manifolds of whiskered tori with two or three frequencies in nearly-integrable Hamiltonian systems, such that the hyperbolic part is given by a pendulum. We consider a 2-dimensional torus with a frequency vector ω = (1,Ω), where Ω is a quadratic irrational number, or a 3-dimensional torus with a frequency vector ω = (1,Ω,Ω2), where Ω is a cubic irrational num...
متن کاملA methodology for obtaining asymptotic estimates for the exponentially small splitting of separatrices to whiskered tori with quadratic frequencies
The aim of this work is to provide asymptotic estimates for the splitting of separatrices in a perturbed 3-degree-of-freedom Hamiltonian system, associated to a 2-dimensional whiskered torus (invariant hyperbolic torus) whose frequency ratio is a quadratic irrational number. We show that the dependence of the asymptotic estimates on the perturbation parameter is described by some functions whic...
متن کاملA proof of existence of whiskered tori with quasi at homoclinic intersections in a class of almost integrable hamiltonian systems
Rotators interacting with a pendulum via small, velocity independent, potentials are considered: the invariant tori with diophantine rotation numbers are unstable and have stable and unstable manifolds (\whiskers"), whose intersections deene a set of homoclinic points. The homoclinic splitting can be introduced as a measure of the splitting of the stable and unstable manifolds near to any homoc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- I. J. Bifurcation and Chaos
دوره 24 شماره
صفحات -
تاریخ انتشار 2014